
2/3/2010

1

Luiz DeRose © Cray Inc.

Joint Cray XT5 Workshop
NERSC / ORNL / NICS February, 2010

! Goal of scientific libraries
Improve Productivity at optimal performance

! Cray use four concentrations to achieve this
• Standardization

" Use standard or “de facto” standard interfaces whenever available

• Hand tuning
" Use extensive knowledge of target processor and network to optimize

common code patterns

• Auto-tuning
" Automate code generation and a huge number of empirical performance

evaluations to configure software to the target platforms

• Adaptive Libraries
" Make runtime decisions to choose the best kernel/library/routine

February 2010 Luiz DeRose © Cray Inc. 2

2/3/2010

2

! Three separate classes of standardization, each with a
corresponding definition of productivity
1. Standard interfaces (e.g., dense linear algebra)

" Bend over backwards to keep everything the same despite increases in" Bend over backwards to keep everything the same despite increases in
machine complexity. Innovate ‘behind-the-scenes’

" Productivity -> innovation to keep things simple

2. Adoption of near-standard interfaces (e.g., sparse kernels)
" Assume near-standards and promote those. Out-mode alternatives.

Innovate ‘behind-the-scenes’
" Productivity -> innovation in the simplest areas

o (requires the same innovation as #1 also)

3. Simplification of non-standard interfaces (e.g., FFT)
" Productivity -> innovation to make things simpler than they are

February 2010 Luiz DeRose © Cray Inc. 3

! Algorithmic tuning
• Increased performance by exploiting algorithmic improvements

" Sub-blocking, new algorithms
• LAPACK ScaLAPACK• LAPACK, ScaLAPACK

! Kernel tuning
• Improve the numerical kernel performance in assembly language
• BLAS, FFT

P ll l i! Parallel tuning
• Exploit Cray’s custom network interfaces and MPT
• ScaLAPACK, P-CRAFFT

February 2010 Luiz DeRose © Cray Inc. 4

2/3/2010

3

Dense Sparse FFT

BLAS

LAPACK

ScaLAPACK

CASK

PETSc

Trilinos

CRAFFT

FFTW

P CRAFFTIRT Trilinos P!CRAFFT

IRT – Iterative Refinement Toolkit
CASK – Cray Adaptive Sparse Kernels
CRAFFT – Cray Adaptive FFT

Luiz DeRose © Cray Inc. 5February 2010

! Serial and Parallel versions of sparse iterative linear solvers
• Suites of iterative solvers

CG GMRES BiCG QMR" CG, GMRES, BiCG, QMR, etc.
• Suites of preconditioning methods

" IC, ILU, diagonal block (ILU/IC), Additive Schwartz, Jacobi, SOR
• Support block sparse matrix data format for better performance
• Interface to external packages (ScaLAPACK, SuperLU_DIST)
• Fortran and C support
• Newton-type nonlinear solvers

! Large user community
• DoE Labs, PSC, CSCS, CSC, ERDC, AWE and more.

! http://www-unix.mcs.anl.gov/petsc/petsc-as

February 2010 Luiz DeRose © Cray Inc. 6

2/3/2010

4

! Cray provides state-of-the art scientific computing packages
to strengthen the capability of PETSc
• Hypre: scalable parallel preconditioners

" AMG (Very scalable and efficient for specific class of problems)" AMG (Very scalable and efficient for specific class of problems)
" 2 different ILU (General purpose)
" Sparse Approximate Inverse (General purpose)

• ParMetis: parallel graph partitioning package
• MUMPS: parallel multifrontal sparse direct solver
• SuperLU: sequential version of SuperLU_DIST

! To use Cray-PETSc, load the appropriate module :
module load petsc
module load petsc-complex
(no need to load a compiler specific module)

! Treat the Cray distribution as your local PETSc installation

February 2010 Luiz DeRose © Cray Inc. 7

! The Trilinos Project http://trilinos.sandia.gov/
“an effort to develop algorithms and enabling technologies
within an object-oriented software framework for the solution
fof large-scale, complex multi-physics engineering and

scientific problems”
! A unique design feature of Trilinos is its focus on packages
! Very large user-base and growing rapidly

• Important to DOE

! Cray’s optimized Trilinos released on January 21y p y
• Includes 50+ Trilinos packages
• Optimized via CASK
• Any code that uses Epetra objects can access the optimizations

! Usage :
module load trilinos

February 2010 Luiz DeRose © Cray Inc. 8

2/3/2010

5

! CASK is a product developed at Cray using the
Cray Auto-tuning Framework (Cray ATF)

! The CASK Concept :! The CASK Concept :
• Analyze matrix at minimal cost
• Categorize matrix against internal classes
• Based on offline experience, find best CASK code for particular matrix
• Previously assign “best” compiler flags to CASK code
• Assign best CASK kernel and perform Ax

! CASK silently sits beneath PETSc and Trilinos on Cray
systems

! Released with PETSc 3.0 in February 2009
• Generic and blocked CSR format

Luiz DeRose © Cray Inc. 9February 2010

• Highly"portable

Large!scale"application

• User"controlled

• Highly portable

• User"controlled

PETSc /"Trilinos /"Hypre

CASK

All systems

Cray only

• XT4"&"XT5"
specific"/"tuned

• Transparent"to"
User

Luiz DeRose © Cray Inc. 10February 2010

2/3/2010

6

Speedup on Parallel SpMV on 8 cores, 60 different matrices

1.4

1.1

1.2

1.3

1

0 10 20 30 40 50 60

Matrix!ID#

Luiz DeRose © Cray Inc. 11February 2010

Block!Jacobi!Preconditioning

Performance of CASK VS PETSc Performance!of!CASK!VS!PETSc

SpMV

50

100

150

200

G
Fl
op

s

Performance!of!CASK!VS!PETSc
N=65,536!to!67,108,864!

100

150

200

250

300

G
Fl
op

s

N=65,536!to!67,108,864

0

50

0 128 256 384 512 640 768 896 1024

#!of!Cores

MatMult!CASK MatMult!PETSc

0

50

0 128 256 384 512 640 768 896 1024

#!of!Cores

BlockJacobi!IC(0)!CASK BlockJacobi!IC(0)!PETSc

Luiz DeRose © Cray Inc. 12February 2010

2/3/2010

7

4500
5000

Geometric Mean of 80 sparse matrix instances from U of Florida collection

1000
1500
2000
2500
3000
3500
4000

M
Fl
op

s

0
500

1 2 3 4 5 6 7 8

#!of!vectors

CASK Trilinos"Original
February 2010 13Luiz DeRose © Cray Inc.

1600
1800
2000

0
200
400
600
800
1000
1200
1400
1600

M
Fl
op

s

Matrix!Name

February 2010 14Luiz DeRose © Cray Inc.

2/3/2010

8

! In FFTs, the problems are
• Which library choice to use?
• How to use complicated interfaces (e.g., FFTW)

! Standard FFT practice
• Do a plan stage

" Deduced machine and system information and run micro-kernels
" Select best FFT strategy

• Do an execute• Do an execute

Our system knowledge can remove some of this cost!

Luiz DeRose © Cray Inc. 15February 2010

! CRAFFT is designed with simple-to-use interfaces
• Planning and execution stage can be combined into one function call
• Underneath the interfaces, CRAFFT calls the appropriate FFT kernel

! CRAFFT provides both offline and online tuning
• Offline tuning

" Which FFT kernel to use
" Pre-computed PLANs for common-sized FFT
o No expensive plan stages

• Online tuning is performed as necessary at runtime as well

At ti CRAFFT ill d ti l l t th b t FFT! At runtime, CRAFFT will adaptively select the best FFT
kernel to use based on both offline and online testing (e.g.
FFTW, Custom FFT)

Luiz DeRose © Cray Inc. 16February 2010

2/3/2010

9

128x128 256x256 512x512

FFTW"plan 74 312 2758

FFTW"exec 0.105 0.97 9.7

February 2010Luiz DeRose © Cray Inc. Slide
17

CRAFFT"plan 0.00037 0.0009 0.00005

CRAFFT"exec 0.139 1.2 11.4

1. Load module fftw/3.2.0 or higher.
2. Add a Fortran statement “use crafft”
3. call crafft_init()
4. Call crafft transform using none, some or all optional

arguments (as shown in red)
In-place, implicit memory management :

call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign)

in-place, explicit memory management
call crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,isign,work)

out-of-place, explicit memory management :
crafft_z2z3d(n1,n2,n3,input,ld_in,ld_in2,output,ld_out,ld_out2,isign,work)

Note : the user can also control the planning strategy of CRAFFT using the
CRAFFT_PLANNING environment variable and the do_exe optional argument,
please see the intro_crafft man page.

February 2010 Luiz DeRose © Cray Inc. 18

2/3/2010

10

! As of December 2009, CRAFFT includes distributed parallel
transforms

! Uses the CRAFFT interface prefixed by “p”, with optional
arguments

! Can provide performance improvement over FFTW 2.1.5
! Currently implemented

• complex-complex
• 3-d and 2-d
• In-place and out-of-place

! Next release of CRAFFT
• Parallel real-complex and complex-real
• C language support for serial and parallel

February 2010 Luiz DeRose © Cray Inc. 19

1. Add “use crafft” to Fortran code
2. Initialize CRAFFT using crafft_init
3. Assume MPI initialized and data distributed (see manpage)
44. Call crafft, e.g. (optional arguments in red)

2-d complex-complex, in-place, internal mem management :
call crafft_pz2z2d(n1,n2,input,isign,flag,comm)

2-d complex-complex, in-place with no internal memory :
call crafft_pz2z2d(n1,n2,input,isign,flag,comm,work)

2-d complex-complex, out-of-place, internal mem manager :
ll fft 2 2d(1 2 i t t t i i fl)call crafft_pz2z2d(n1,n2,input,output,isign,flag,comm)

2-d complex-complex, out-of-place, no internal memory :
crafft_pz2z2d(n1,n2,input,output,isign,flag,comm,work)

Each routine above has man page. Also see 3d equivalent :
man crafft_pz2z3d

February 2010 Luiz DeRose © Cray Inc. 20

2/3/2010

11

120,000

140,000
2D!FFT!(N!x!N,!transposed),!128!cores

40,000

60,000

80,000

100,000

M
flo

ps

pcrafft

fftw2.5.1

February 2010 Luiz DeRose © Cray Inc. 21

0

20,000

128 256 512 1024 2048 4096 8192 163843276865536

Size!N

! Solves linear systems in single precision
! Obtaining solutions accurate to double precision

• For well conditioned problems
! Serial and Parallel versions of LU Cholesky and QRSerial and Parallel versions of LU, Cholesky, and QR
! 2 usage methods

• IRT Benchmark routines
" Uses IRT 'under-the-covers' without changing your code

o Simply set an environment variable
o Useful when you cannot alter source code

• Advanced IRT API
" If greater control of the iterative refinement process is required" If greater control of the iterative refinement process is required

o Allows
» condition number estimation
» error bounds return
» minimization of either forward or backward error
» 'fall back' to full precision if the condition number is too high
» max number of iterations can be altered by users

February 2010 Luiz DeRose © Cray Inc. 22

2/3/2010

12

! “High Power Electromagnetic
Wave Heating in the ITER
Burning Plasma’’

! rf heating in tokamak

! Maxwell-Bolzmann Eqns

! FFT

! Dense linear system

! Calc Quasi-linear op

Courtesy
Richard Barrett

February 2010 23Luiz DeRose © Cray Inc.

Theoretical
PeakPeak

Luiz DeRose © Cray Inc. 24February 2010

2/3/2010

13

Decide if you want to use advanced API or benchmark API
benchmark API :

setenv IRT_USE_SOLVERS 1
Advanced API :

1. locate the factor and solve in your code (LAPACK or
ScaLAPACK)

2. Replace factor and solve with a call to IRT routine
• e.g. dgesv -> irt_lu_real_serial
• e.g. pzgesv -> irt_lu_complex_parallelg p g _ _ p _p
• e.g pzposv -> irt_po_complex_parallel

3. Set advanced arguments
• Forward error convergence for most accurate solution
• Condition number estimate
• “fall-back” to full precision if condition number too high

February 2010 Luiz DeRose © Cray Inc. 25

! LibSci 10.4.2 February 18th 2010
• OpenMP-aware LibSci
• Allows calling of BLAS inside or outside parallel region
• Single library supported• Single library supported

" No multi-thread library and single thread library (-lsci and –lsci_mp)
" Performance not compromised

! Trilinos update February 18th 2010
• CASK optimizations for multiple vectors (as shown earlier)

February 2010 Luiz DeRose © Cray Inc. 26

2/3/2010

14

Luiz DeRose © Cray Inc.

Joint Cray XT5 Workshop
NERSC / ORNL / NICS February, 2010

